The Isomerization of 1-Methyl Cyclobutene by Single Collision Activation at a Surface. Variation of Initial Energy. by R. Arakawa and B. S. Rabinovitch Department of Chemistry BG-10, University of Washington Seattle, Washington 98195 Technical Report No. NR092-549-TR25 Contract N00014-75-C-0690, NR-092-549 June 1, 1982 Prepared for Publication in Journal of Physical Chemistry OFFICE OF NAVAL RESEARCH Department of the Navy Code 473 800 N. Quincy Arlington, VA 22217 C FILE COP Reproduction in whole or in part is permitted for any purpose of the United States Government. This document has been approved for public release; its distribution is unlimited. ري' بي'لي SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) | REPORT DOCUMENTATION PAGE | BEFORE COMPLETING FORM | |---|--| | 1. REPORT NUMBER 2. GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER | | NR092-549-TR25 #-17-115-8/4 | | | 4. TITLE (and Substite) The Isomerization of 1-Methyl Cyclobutene by | 5. TYPE OF REPORT & PERIOD COVERED | | Single Collision Activation at a Surface. | Technical | | Variation of Initial Energy. | 6. PERFORMING ORG. REPORT NUMBER | | | 6. PERFORMING ONG. REPORT NUMBER | | 7. AUTHOR(s) | 8. CONTRACT OR GRANT NUMBER(#) | | R. Arakawa and B. S. Rabinovitch | N00014-75-C-0690 | | | NR092-549 | | A DEDECOMES ACCOUNTATION WAVE AND ADDRESS | 10 DDOCDAY EVENT DDOVEST TAGE | | Professor B. S. Rabinovitch | 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS | | Department of Chemistry BG-10 | } | | University of Washington
Seattle, WA 98195 | | | 11. CONTROLLING OFFICE NAME AND ADDRESS | 12. REPORT DATE | | Office of Naval Research, Code 743 Department of the Navy | June 1, 1982 | | 800 N. Quincy | 13. NUMBER OF PAGES | | Arlington, VA 22217 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) | 15. SECURITY CLASS, (of this report) | | | | | | Unclassified | | | 154. DECLASSIFICATION/DOWNGRADING
SCHEDULE | | · · · · · · · · · · · · · · · · · · · | | | 16. DISTRIBUTION STATEMENT (of this Report) | · . | | This document has been approved for public relea- | se: | | its distribution is unlimited. | | | | | | | | | 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro | m Report) | | Prepared for publication in J. Phys. Chem. | • | | riepared for publication in o. rhys. chem. | : | | | | | 18. SUPPLEMENTARY NOTES | | | | | | | | | | | | 19. KEY WORDS (Continue on reverse side it necessary and identify by block number) | | | Accommodation coefficient Methyl cyclobuter | ne | | Cyclobutene Surfaces | | | Energy Transfer Unimolecular Read | | | Gases Vibrational Relax | kation | | High Temperature | | | | | | The initial vibrational energy of molecules to | hat collide with a hot surface | | The initial vibrational energy of molecules the has been varied. The effect on the collisional repeated under single collision conditions. The studied under single collision conditions. | hat collide with a hot surface
action probability (Pc) has | The initial vibrational energy of molecules that collide with a hot surface has been varied. The effect on the collisional reaction probability (Pc) has been studied under single collision conditions. These experiments provide a sensitive test of the suitability of various analytical forms for the collisional transition probability matrix, P. The reaction system is the isomerization of methyl cyclobutene to pentadiene. A seasoned fused quartz surface was used over the temperature range Tr = 580 K - 800 K. Variation of the initial energy population vector of cyclobutene molecules was made by change of the initial temperature To in the range 273 K - 500 K. Gaussian forms of P prove to be the most suitable to fit the data. DD 1 JAN 73 1473 EDITION OF 1 NOV 63 15 0850LETE S/N 0102 LF 014-6601 Unclassified The Isomerization of 1-Methyl Cyclobutene by Single Collision Activation at a Surface. Variation of Initial Energy.* by R. Arakawa and B. S. Rabinovitch Department of Chemistry BG-10, University of Washington Seattle, Washington 98195 #### **Abstract** The reaction probability per collision, $\mathbf{P}_{\mathbf{c}}$, for 1-methylcyclobutene activated at a hot seasoned fused silica surface has been measured under single collision conditions over the reactor temperature range T_r = 480 K - 800 K. The initial thermal vibrational energy population distribution of the cyclobutene molecules was varied from T_c = 273 K - 570 K. The reaction is isomerization to isoprene. Mixed samples of 1-methylcyclobutene and cyclobutene (which had been studied earlier) were used for internal comparison under the same conditions. These experiments provide a test of the relative suitability of various analytical forms for the collisional transition probability matrix P . Stochastic calculations with a Gaussian form provide the best overall fit to the data. The calculated average amount of energy ($<\Delta E'>_{E_{\Omega}}$) transferred from the hot molecules in a vibrational down transition from the reaction threshold energy level, E_0 , declined from 7220 cm $^{-1}$ to 3890 cm $^{-1}$ with increase in surface temperature from 600 K to 800 K. The experimental collisional efficiency, β_1 , declined from 0.39 to 0.035 over the combination temperature range T_r , $T_r = 600,500$ to 800,293. Strong collider behavior was observed with both 1-methyl cyclobutene and cyclobutene for $T_{\mathbf{r}}$ less than 450 K. #### Introduction Gas-surface vibrational energy accommodation is being intensively studied, both experimentally and theoretically. $^{1-5}$ The variable encounter method (VEM) provides a simple technique for the study of collisional transfer of vibrational energy between gas molecules and a surface $^{4,6-9}$ at levels of excitation corresponding to homogeneous unimolecular reaction. By this technique, cold substrate molecules that are initially equilibrated at low temperature T_c experience a known, and experimentally variable number of sequential collisions, m, with a hot reactor surface at temperature T_r before leaving the reactor and re-equilibrating to their initial low temperature. Values of m between 2 and 30 have been conventionally used. Gas molecules describe a random walk along an energy coordinate until they reach an absorbing level, the critical reaction threshold E_0 , characteristic of the homogeneous gas reaction. Such relaxation of non-equilibrium vibrational energy distribution was described theoretically a number of years ago by Rubin and Shuler, 10 and by Kim 11 and Widom. 12 Recently, single collision measurements (m = 1) by the VEM technique were described for the cyclobutene (CB) system. ^{13,14} Initial vibrational energy of CB was varied. ¹⁴ In the present communication, we have applied the single collision condition to the study of 1-methylcyclobutene (1-MCB) system for comparison with that of CB. The surface is a "seasoned" fused quartz finger. Although such a surface is not well defined, it is the conventional experimental surface of thermal kinetics. The vibrational energy population vector of molecules after one collision, N_1 , is given by $N_1 = PN_C^{eq}$, where P is a collisional transition probability matrix, and N_C^{eq} is the initial vibrational energy population vector that corresponds to the thermal Boltzmann distribution at the low temperature of the gas reservoir wall. Since no comprehensive theory of gas-surface collision interaction exists, at least for complex molecules on these surfaces, down-jump transition probability elements of the P matrix were constructed according to various assumed mathematical models; these have some plausible connections with physical reality. Up-jump transition probabilities were constructed from the down-jump transitions with use of the conditions of detailed balance and completeness. The ring-opening unimolecular isomerization of 1-MCB to isoprene has a low E_0 (34.2 kcal mol⁻¹); that for CB is ¹⁵ 32.4 kcal mole⁻¹. The effect of the methyl substituent on the collisional reaction probability provides an interesting comparison. Previously, a similar comparison was made for the collisional relaxation of vibrational energy transients in the methyl cyclopropane and cyclopropane systems using a VEM(m > 1) technique. #### Experimental The 1-MCB substrate sample was a mixture containing 14% of 3-MCB as impurity; it was not removed since it caused no complication and allowed a rough concurrent measurement for its own isomerization. A similar amount of cyclobutene was added as an internal standard. The reaction system apparatus used here was the same as that for previous single collision experiments. 13,14 The reaction vessel consisted of a 3-2 spherical pyrex reservoir flask that was provided with an internally heated, central fused-quartz finger. The flask and the finger were heated independently. Two experimental used to measure the isomerization rate constants: a) the surface temperature of the reactor finger was varied from 600 K to 800 K, while the wall temperature of the flask reservoir was varied from 273 K to 550 K. b) the reactor temperature was varied from 480 K to 800 K at constant wall temperature of 273 K. Temperature deviation of the finger surface was a maximum of ± 5°K at 800 K, and that of the flask wall was ± 10°K at 550 K. Before kinetic measurements were made, the reactive surface of fused quartz was "seasoned" at the highest temperature and the seasoning was maintained by exposure for a few hours to the mixture gas at a pressure of $\sqrt{5}$ x10⁻³ torr prior to each run. The system was run in both static and flow modes in the pressure region between 10^{-4} and 10^{-3} torr, usually $\sim 2 \text{x} 10^{-4}$ torr. For the flow mode, typical residence times in the reactor were 10 to 30 sec. Duration of a flow run was several minutes. Detailed description of both modes was given earlier. ¹³ Pressure measurements were made with an MKS 146H capacitance manometer. Product analysis was performed by gas liquid phase chromatography on a 5 ft x 3/16 in. squalane column on Chromsorb P at 0° C with FID detection. #### Results Observed rate constants for 1-MCB isomerization to isoprene were calculated from the product yield. The total observed rate constant $k_{\rm t}$ was a sum of reaction due to heating at the reaction finger, $k_{\rm r}$, and at the reservoir wall, $k_{\rm r}$, given by $$k_{t}(T_{r},T_{c}) = k_{r}(T_{r},T_{c}) + k_{c}(T_{c})$$ Independent measurements of $k_c(T_c)$ were made under the experimental condition, $T_r = T_c$, with use of a minor area correction for the relative surface area of the reactor finger and the reservoir wall (1:13). Both rate constants k_t and k_c are shown in Fig. 1. Experimental values having a cross mark in Fig. 1 were rejected, since correction for k_c amounted to $\approx 50\%$ of the total rate k_t . The reaction probability per collision, $P_c(T_r,T_c)$, was calculated from the finger surface reaction constant $k_r(T_r,T_c)$, $$P_c(T_r,T_c) = k_r(T_r,T_c)/(A(8kT_c/\pi m)^{\frac{1}{2}}/4V)$$, where A is the reactor finger surface area, k is the Boltzmann constant, m is the molecular weight, and V is the volume of the reservoir flask. The values of the reaction probability are plotted as a function of T_c in Fig. 2 and are listed in Table 1. The experimental uncertainty in P_c is estimated to be \sim 20%. Also listed is the collisional efficiency, β_1 , defined as $\beta_1 = P_c(T_r,T_c)/P_c^{SC}(T_r)$; these quantities are the analog of the conventional homogeneous thermal collisional efficiency factor, β . The values of $P_c^{SC}(T_r)$ are calculated from the Boltzmann distribution population vector characteristic of T_r . The mathematical forms used here for the transition probability distribution of <u>down</u>-transition energy jumps ΔE are exponential (E), Gaussian (G), a Boltzmann weighted exponential (BE), and Gaussian (BG) functions, given by Eqs. (1)-(4): $$p^{E}(\Delta E) = C_{1} \exp(-\Delta E/\langle \Delta E \rangle)$$ (1) $$p^{G}(\Delta E) = C_2 \exp(-(\Delta E - \Delta E_{mp})^2 / 2\sigma^2)$$ (2) $$r_{i \leftarrow i}^{BE}(\Delta E) = c_3 B_i p^E(\Delta E)$$ (3) $$p_{i+j}^{BG}(\Delta E) = C_4 B_i p^G(\Delta E); B_i = g_i exp(-E_i/RT_r)$$ (4) Here, $<\Delta E>$, ΔE_{mp} , and σ are parameters of the models, the C_{j} 's are normalization constants; and B_i is a normalized Boltzmann distribution characteristic of the finger surface temperature, $\mathbf{T}_{\mathbf{r}}$, where $\mathbf{g}_{\mathbf{i}}$ is the density of internal states at energy level E_i ; σ is set equal to 0.7 ΔE_{mp} for the G and BG models. Transition probability values below E=0in a down transition from the energy level i were added to the element for elastic collisional transition probability, $\mathbf{p_{ii}}$. The E and G models have been termed "flat" 6,7 since the distributions given by them are independent of the initial energy level. The microscopic rate constants at each reactive energy level were calculated by RRKM theory with use of the vibrational frequency assignment of Elliott and Frey; 15 these calculations were made with an energy grain size of 100 cm⁻¹ that was also used to specify the transition probability matrix. Isomerization of excited molecules occurs during the average (collisionless) flight time between the reactor surface and the reservoir wall (9 cm). An average fraction, f_d , of molecules excited above E_0 that decompose during the flight time was calculated in order to estimate the dependence of the observed rate constant on the reaction probability. The most favorable experimental situation is obtained for $f_d=1$, corresponding to $k/k_\infty \to 0$ in a homogeneous system; in this case, which holds for CB, reaction is governed only by the collisionally activated population distribution, and the need for RRKM calculations of k(E), the specific reaction probability at internal energy E, with a postulated activated complex structure, is removed. In the present case, $f_d \sim 0.6$ -0.65, so that the accuracy of the measurements was only moderately dependent on the accuracy of the RRKM calculational details. Clearly, as $f_d \to 0$, corresponding to $k/k_\infty \to 1$ in the p $\to \infty$ homogeneous case, no reliable information about energy transfer can be gained. Results of the least squares fitting to the experimental P curve for each reaction surface temperature (with use of < ΔE >, or ΔE_{mp} , as the parameter of fit) are shown in Fig. 3 with use of four models. The corresponding parameters, the average down-transition energy $\langle \Delta E \rangle$ for E and BE, and the most probable energy ΔE_{mn} for G and BG, are listed in Table 2. We have chosen to exhibit, and use, these average values rather than to enumerate a plethora of best-fit values for each value of T_c for a given T_r . Obviously, use of an average constant parameter for the whole T_c range cannot give as good fit at each T_c as would an optimized value. The calculated value of ${^{<\!\Delta}E'^{>}}_{E_{\Omega}}$ is the average amount of energy transferred in a down-transition from the threshold energy level E_0 ; $<\Delta E'>$ is independent of $\mathbf{E}_{\mathbf{n}}$ for \mathbf{E} and \mathbf{G} , but varies with initial level for $\mathbf{B}\mathbf{E}$ and $\mathbf{B}\mathbf{G}$. Also listed is $<\Delta E^{+}>_{av} = [(\bar{E}_{f})_{E_{f}}>E_{0}^{-}E_{0}],$ the average amount of energy transferred in an up transition to the levels above E_{Ω} . The average vibrational energy of 1-MCB molecules, \bar{E} , for the thermal Boltzmann distribution, is given for the temperatures of interest in Table 3. Another important quantity is the average energy transfer, ΔE_{av} , defined as $\Delta E_{av} = \tilde{E}_f - \tilde{E}_c$, where \tilde{E}_c and \tilde{E}_f are the average energies of molecules before and after single collision; ΔE_{av} is listed from results of E, G, and BE calculation in Table 4. The vibrational energy accommodation coefficient, α , is defined as $\alpha = \Delta E_{av}/(\tilde{E}_r - \tilde{E}_c)$, where \tilde{E}_r is the average energy \tilde{E} corresponding to $T = T_r$ and is given in Table 4. Single collision experiments permit a more refined test of the correct form of P than do m > 1 experiments. In particular, an even more stringent criterion is realized here by changing the initial population vector N_C . The features of the experimental P_C curves for all T_r in Fig. 2 are similar to those for CB and also exhibit a foot for $T_C < 400$ K. The best fits at higher temperatures were obtained with the E and G models. The BE and BG models fail to agree with the data curve. At lower temperature $(T_r = 600 \text{ K})$ where collisional interaction becomes stronger, the E model cannot be fitted to the experimental curve of $T_r = 600$ K for any reasonable parameter of $<\Delta E>$. For each model, Fig. 4 shows the normalized transition probability distribution P_{i+E_0} for up- and down-transitions from the level energy E_0 to the level i at a representative condition, $T_r, T_c = 800$, 400 for the parameters obtained by the least squares fitting. It is of interest to examine the relative contribution of the various elements of $N_{\rm C}$ to the vibrational activation to the level E_0 in N_1 . The activation distribution, p_{E_0} in N_1 is shown for the temperature combination (800,400) in Fig. 5 for the various model parameters fitted to experiment by least squares. The activation functions are mainly distributed around the initial energy 2000 cm⁻¹. The maxima would be shifted to higher energies if $\Delta E' >_{E_0}$ values were smaller as was illustrated previously 14 for CB. The various transient population vectors N_1 that arise after single collision are shown in Fig. 6 for the E, G and BE models. For E and G, the N_1 population elements are distributed close to those for $T_r = 800$ K in the energy range below $E = 10^4$ cm⁻¹, while those for the BE model are much below the strong collider curve. The relative population in the energy range below E_0 provides the main criterion for the average amount of energy transferred on collision, ΔE_{av} and for the accommodation coefficient α . Thus, the BE model gives relatively small values of ΔE_{av} and α for the (Table 4). The same situation was found in the CB system. $\frac{14}{2}$ By contrast, $\mathbf{P}_{\mathbf{C}}$ values are determined by the reacting state population above E_0 , in the N_1 vector, and which derives from the product of the up-transition probability to states above E_0 with the state populations of the N_c vector below E_0 . And although $\alpha(BE)$ is smaller than $\alpha(G)$ or $\alpha(E)$, it is evident from Fig. 6 that the BE model is relatively very efficient in transferring molecules to levels above E_0 . Indeed, it gives rise to too-large values of P_c at higher temperatures. As discussed in our earlier CB study, the models for P that fit the experimental P_c values are not necessarily adequate to predict α . It is clearly evident that measurements of α and of P_c are both desirable in order to deduce the most apt form of P. Plots of $P_C(T_r,273)$ obtained by simultaneous measurements of gas mixtures containing both 1-MCB and CB are shown in Fig. 7. Filled squares represent the P_C values from the earlier CB experiment. ¹⁴ Good reproducibility for CB is evident and supports the presumption of a negligible role of catalytic reaction on the fused quartz surface. Strong collider behavior is found for both CB and 1-MCB molecules curves at $T_r < 450$ K. This behavior for CB has been shown in earlier CB studies. 7,13,14 This trend is related to the fact that as T_r is lowered, the time that molecules spend trapped in the gas-surface potential well increases. Some comparison of 1-MCB with CB for the single collision conditions are given in Table 6. The relatively larger experimental values of $P_{\rm C}$ for 1-MCB seems to result from the difference in molecular vibrational eigenstate densities, as illustrated by the mean vibrational energies at 400 K: 1-MCB, $\bar{E}_{400} = 1080 \, {\rm cm}^{-1}$; CB, $\bar{E}_{400} = 760 \, {\rm cm}^{-1}$. The least squares fit values of $<\!\!\Delta E'\!\!>_{E_0}$ for the G model, for 1-MCB and CB, are also listed in Table 6. In the previous VEM studies (m < 1) of $P_c(T_r, 273)$, comparison of methyl-cyclopropane with cyclopropane and of cyclopropane with cyclopropane-d₆ was made with use of the best fitted E model in the reactor temperature range above $T_r = 800$ K. It was found that $<\Delta E^+>_{E_0}$ decreased with an increase in the vibrational heat capacity of each pair of molecules. The energy transfer (m = 1) parameters for 1-MCB and CB fitted to the experimental $P_c(T_r, 273)$ values are listed with use of the G model in Table 6. The more complex 1-MCB molecule appears to exhibit somewhat stronger collider behavior, unlike the methyl- and the cyclopropane systems where the smaller molecule gave larger $<\Delta E^+>$ values. The same trend is observed in the $<\Delta E^+>_{E_0}$ values calculated with use of the best fit E model to the $T_r = 800$ curve, and in the collisional efficiency β_1 . We must leave this effect of structure for future resolution. Acknowledgment: We thank Professor H. M. Frey for the gift of a sample of 1-MCB. This work was supported by the Office of Naval Research. 4400 Table 1. Experimental reaction probability per collision and collisional efficiencies in 1-methyl cyclobutene system. | TrT | | 273 | 400 | 500 | 550 | |-----|----------------|----------------------|----------------------|-----------------------|----------------------| | 800 | P _C | 2.8x10 ⁻⁴ | 3.1x10 ⁻⁴ | 4.5×10 ⁻⁴ | 5.5×10 ⁻⁴ | | | β_1^{a} | 0.035 | 0.039 | 0.056 | 0.068 | | 700 | P _c | 7.0x10 ⁻⁵ | 8.0x10 ⁻⁵ | 1.2×10 ⁻⁴ | | | | β | 0.081 | 0.092 | 0.138 | | | 600 | P _C | 6.5x10 ⁻⁶ | 8.6×10 ⁻⁶ | 1.25x10 ⁻⁵ | | | | β | 0.201 | 0.265 | 0.386 | | a) Collisional efficiency β_1 defined as $\beta_1 = P_c(T_r, T_c)/P_c^{SC}(T_r)$, where $P_c^{SC}(T_r)$ is the reaction probability for strong collider interaction of the molecule with the surface. Table 2. Energy transfer parameters for E, G, BE, and BG models obtained by least square fitting in 1-methyl cyclobutene system. | T _r (K) | Model | <ΔE> or ΔE _{mp} | <ΔE'> _{E0} | ΔE ⁺ av | |--------------------|-------|--------------------------|---------------------|--------------------| | 800 | | 3280 | 2850 ^c | 890 | | 700 | Ε | 5820 | 3650 ^C | 800 | | 600 | | b | | | | | | | | | | 800 | | 3890 | 4300 ^C | 630 | | 700 | G | 4800 | 5180 ^C | 580 | | 600 | | 7220 | 6430 ^C | 580 | | | | | | | | 800 | | 1790 | 3440 | 1130 | | 700 | BE | 1730 | 4780 | 910 | | 600 | | 1770 | 6850 | 690 | | | | | | | | 800 | | 3570 | 5210 | 500 | | 700 | BG | 3570 | 6290 | 500 | | 600 | | 4160 | 7780 | 500 | a) The energy unit is ${\rm cm}^{-1}$ b) The E model could not be fitted to the 600 K curve in Fig. 3. c) Differ from column 3 due to truncation effects Table 3. Average energy of the thermal Boltzmann population in 1-methyl cyclobutene system. | T(K) | 273 | 400 | 500 | 600 | 700 | 800 | |----------------------|-----|------|------|------|------|------| | Ē(cm ⁻¹) | 410 | 1080 | 1870 | 2860 | 4030 | 5320 | Table 4. Average energy transfer ΔE_{av}^{a} and vibrational energy accommodation coefficient $\alpha^{\mbox{\scriptsize b}}$ for 1-methyl cyclobutene by single collision with a seasoned fused quartz surface. | Tr(K) | Mode1 | 273 | 400 | 500 | 550 | |-------|-------|------------|------------|------------|------------| | 800 | | 4910, 0.94 | 3630, 0.86 | 2600, 0.75 | 2090, 0.70 | | 700 | E | 3460, 0.96 | 2470, 0.84 | 1540, 0.72 | | | 600 | | | | | | | | | | | | | | 800 | | 4670, 0.95 | 3950, 0.93 | 3120, 0.91 | 2640, 0.89 | | 700 | G | 3580, 0.99 | 2870, 0.97 | 2030, 0.94 | | | 600 | | 2440, 1.0 | 1720, 0.96 | 910, 0.92 | | | | | | | | | | 800 | | 990, 0.20 | 960, 0.23 | 860, 0.25 | 780, 0.26 | | 700 | BE | 960, 0.27 | 860, 0.29 | 690, 0.32 | | | 600 | | 920, 0.38 | 730, 0.41 | 440, 0.45 | | a) $\Delta E_{av} = \bar{E}_f - \bar{E}_c (cm^{-1})$ b) $\alpha = \Delta E_{av} / (\bar{E}_r - \bar{E}_c)$ Table 5. Some comparisons of 1-methyl cyclobutene with cyclobutene in single collision systems. | | CB 14 | 1-MCB ^a | |---------------------------------------------------|--------------------|-----------------------------| | P _c (800, 400) | 4x10 ⁻⁵ | 3×10 ⁻⁴ | | P _c (600, 400) | 1×10 ⁻⁶ | 9×10 ⁻⁶ | | $E_0(kcal mole^{-1})$ | 32.4 | 34.2 | | k(E) (sec ⁻¹) ^b | √ 10 ⁵ | ∿ 10 ³ | | f _d | 1 | 0.64(800,500) ^e | | | | 0.60(600, 273) ^e | | E ₄₀₀ (cm ⁻¹) ^c | 760 | 1080 | | <0Ε,> ^E 0 | 4090 | 4300 | - a) Present work - The isomerization rate constant by RRKM theory at several 100 cm⁻¹ above E₀. - c) Average thermal energy at 400 K. - d) Average down transition energy from the level of energy $\rm E_0$, given by the G model for $\rm T_r$ = 800 K. - e) Calculated by G model. Table 6. Energy transfer parameters fitted to experimental $P_c(T_t, 273)$ with the G model in the 1-MCB and CB systems. | T _r (K) | | 600_ | _700 | 800 | |---------------------|-------|------|-------------------------|--------------------------| | <ΔE'> _{E0} | СВ | 5595 | 4580 | 4070 (2490) ^h | | U | 1-MCB | 6325 | 5350 | 4630 (2870) ^b | | ^{ΔE} av | СВ | 1620 | 2420 | 3200 (2480) ^b | | | 1-MCB | 2440 | 3590(3450) ^b | 4740 (4640) ^b | | α | СВ | 0.96 | 0.96 | 0.94 (0.73) ^b | | u | 1-MCB | 1.0 | 0.97(0.96) ^b | 0.97 (0.95) ^b | | Q. | СВ | 0.13 | 0.044 | 0.021 | | β1 | 1-MCB | 0.21 | 0.084 | 0.036 | a) In units of cm^{-1} b) Parenthetic calculation made with the least squares fitted E model. ### References - * Work supported by the Office of Naval Research. - # Permanent address: Dept. of Chemistry, Osaka University, Osaka 560, Japan - Goodman, F. O.; Wachman, H. Y. "Dynamics of Gas Surface Scattering", Academic Press, New York, 1976. - Draper, C. W.; Rosenblatt, G. M. J. Chem. Phys. 1978, 69, 1465; Foner, S. N.; Hudson, R. L. J. Chem. Phys. 1981, 75, 4727. - 3. Prada-Silva, G.; Löffler, O.; Halpern, B. L.; Haller, G. L.; Fenn, J. B. Surface Sci. 1979, 83, 453. - Kelley, D. F.; Barton, B. D.; Zalotai, L.; Rabinovitch, B. S. <u>J. Chem. Phys.</u> 1979, 71, 358; Kelley, D. F.; Zalotai, L.; Rabinovitch, B. S. <u>Chem. Phys.</u> 1980, 46, 379. - Connolly, M. S.; Greene, E. F.; Gupta, C.; Marzuk, P.; Morton, T. H.; Parks, C.; Staker, G. J. Phys. Chem. 1981, 85, 235. - Flowers, M. C.; Wolters, F. C.; Barton, B. D.; Rabinovitch, B. S. Chem. Phys. 1980, 47, 189. - Flowers, M. C.; Wolters, F. C.; Kelley, D. F.; Rabinovitch, B. S. Chem. Phys. Lett. 1980, 69, 543. - 8. Wolters, F. C.; Flowers, M. C.; Rabinovitch, B. S. <u>J. Phys. Chem.</u> 1981, 85, 589. - 9. Kelley, D. F.; Kasai, T.; Rabinovitch, B. S. <u>J. Chem. Phys.</u> 1980, 73, 5611. - 10. Rubin, R. J.; Shuler, K. E. J. Chem. Phys. 1956, 25, 59,68 et seq. - 11. Kim, S. K. J. Chem. Phys. 1958, 28, 1057. - 12. Widom, B. J. Chem. Phys. 1959, 31, 1387; 1961, 34, 2050. - 13. Kelley, D. F.; Kasai, T.; Rabinovitch, B. S. J. Phys. Chem. 1981, 85, 1100. - 14. Arakawa, R.; Kelley, D. F.; Rabinovitch, B. S. <u>J. Chem. Phys.</u> 1982, 76, 2384. - 15. Elliot, C. S.; Frey, H. M. <u>Trans. Far. Soc.</u> 1966, 62, 895. - 16. Tardy, D. C.; Rabinovitch, B. S. Chem. Revs. 1977, 77, 369. - 17. Yuan, W.; Tosa, R.; Chao, K.-J.; Rabinovitch, B. S. <u>Chem. Phys. Lett.</u> 1982, 85, 27. ### Figure Captions - Fig. 1. Observed isomerization rate constants of 1-methylcyclobutene to isoprene. Open and solid points represent the total rate constants, k_t , and the wall collisional rate constants, k_c . The crossed points were not used for the P_c calculations. - Fig. 2. Plot of P_c verus the initial temperature T_c . - Fig. 3. Calculated $P_c(T_r,T_c)$ plots for each finger surface temperature by least square fitting with use of the E (— --), G (— —), BE (-----), and BG (—) models; the heavy solid line summarizes the experimental curve. - Fig. 4. Plot of normalized transition probability distributions for down and up jumps starting from the vibrational energy level E_0 = 11950 cm⁻¹, calculated for the E, G, BE, and BG models for the temperature combination T_r , T_c = 800, 400. - Fig. 5. Curves showing relative contribution of the various elements of $_{\sim C}^{N}$ to vibrational activation to the level E_0 in $_{\sim 1}^{N}$, given by $P_{E_0} \leftarrow i^n c_i$. These illustrative plots were calculated for the reaction temperature combination (800,400) on the basis of the least squares fitted parameters and are plotted with arbitrary units of the ordinate. Obviously, slightly different curves would result from a different temperature combination or different fitting procedure. - Fig. 6 Relative population distribution vector versus energy E. N_{c}^{eq} and N_{r}^{eq} represent the Boltzmann distribution curves characteristic of the initial temperature, $T_{c} = 400$ K, and the reactor surface temperature, $T_{r} = 800$ K, respectively. N_{l} superscripted E, G, and BE represent the transient distribution curve after one collision with the surface, the two left ordinates apply. The k(E) curve is the RRKM isomerization rate constant to which the right side ordinate applies. - Fig. 7 Plots of experimental values of $P_c(T_r, 273)$ versus T_r for 1-MCB () and CB (---) substrates measured by internal comparison in the same conditional reaction system. Also shown are the calculated strong-collider $P_c^{SC}(T_r)$ curve. Solid squares represent earlier experimental values. ¹⁴ 3. 1 7.45 .7 June 1, 1982 | <u>No.</u> | Copies | No. Copies | |-------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------| | Dr. L.V. Schmidt Assistant Secretary of the Navy (R,E, and S) Room 5E 731 Pentagon | 1 | Dr. F. Roberto 1
Code AFRPL MKPA
Edwards AFB, CA 93523 | | Washington, D.C. 20350 | | Dr. L.H. Caveny Air Force Office of Scientific | | Dr. A.L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
Code RD-1
Washington, D.C. 20380 | | Research
Directorate of Aerospace Sciences
Bolling Air Force Base
Washington, D.C. 20332 | | Dr. Richard S. Miller
Office of Naval Research
Code 473
Arlington, VA 22217 | 10 . | Mr. Donald L. Ball 1 Air Force Office of Scientific Research Directorate of Chemical Sciences Bolling Air Force Base | | Mr. David Siegel
Office of Naval Research
Code 260
Arlington, VA 22217 | 1 | Washington, D.C. 20332 Dr. John S. Wilkes, Jr. 1 FJSRL/NC USAF Academy, CO 80840 | | Dr. R.J. Marcus
Office of Naval Research
Western Office
1030 East Green Street
Pasadena, CA 91106 | 1 | Dr. R.L. Lou 1
Aerojet Strategic Propulsion Co.
P.O. Box 15699C
Sacramento, CA 95813 | | Dr. Larry Peebles
Office of Naval Research
East Central Regional Office
666 Summer Street, Bldg. 114-D
Boston, MA 02210 | 1 | Dr. V.J. Keenan 1 Anal-Syn Lab Inc. P.O. Box 547 Paoli, PA 19301 Dr. Philip Howe 1 | | Dr. Phillip A. Miller Office of Naval Research San Francisco Area Office One Hallidie Plaza, Suite 601 San Francisco, CA 94102 | 1 | Army Ballistic Research Labs ARRADCOM Code DRDAR-BLT Aberdeen Proving Ground, MD 21005 Mr. L.A. Watermeier | | Mr. Otto K. Heiney
AFATL - DLDL
Eglin AFB, FL 32542 | 1 | Army Ballistic Research Labs
ARRADCOM
Code DRDAR-BLI
Aberdeen Proving Ground, MD 21005 | | Mr. R. Geisler
ATTN: MKP/MS24
AFRPL
Edwards AFB, CA 93523 | 1 | Dr. W.W. Wharton 1 Attn: DRSMI-RKL Commander U.S. Army Missile Command Redstone Arsenal, AL 35898 | | No. C | Copies | <u>No</u> . | Copies | |--|--------|--|----------| | Mr. J. Murrin
Naval Sea Systems Command
Code 62R2
Washington, D.C. 20362 | | Dr. A. Nielsen
Naval Weapons Center
Code 385
China Lake, CA 93555 | 1 | | Dr. P.J. Pastine
Naval Surface Weapons Center
Code RO4
White Oak
Silver Spring, MD 20910 | 1 | Dr. R. Reed, Jr.
Naval Weapons Center
Code 388
China Lake, CA 93555 | 1 | | Mr. L. Roslund
Naval Surface Weapons Center
Code R122
White Oak | 1 . | Dr. L. Smith
Naval Weapons Center
Code 3205
China Lake, CA 93555 | 1 | | Silver Spring, MD 20910 Mr. M. Stosz Naval Surface Weapons Center | 1 | Dr. B. Douda
Naval Weapons Support Cent
Code 5042
Crane, IN 47522 | l
cer | | Code R121 White Oak Silver Spring, MD 20910 Dr. E. Zimmet | 1 | Dr. A. Faulstich
Chief of Naval Technology
MAT Code 0716
Washington, D.C. 20360 | 1 | | Naval Surface Weapons Center
Code R13
White Oak
Silver Spring, MD 20910 | | LCDR J. Walker
Chief of Naval Material
Office of Naval Technology
MAT, Code 0712 | 1 | | Dr. D.R. Derr
Naval Weapons Center | 1 | Washington, D.C. 20360 | | | Code 388
China Lake, CA 93555 | | Mr. Joe McCartney
Naval Ocean Systems Center
San Diego, CA 92152 | 1 | | Mr. Lee N. Gilbert
Naval Weapons Center
Code 3205
China Lake, CA 93555 | ī | Dr. S. Yamamoto
Marine Sciences Division
Naval Ocean Systems Center
San Diego, CA 91232 | 1 | | Dr. E. Martin
Naval Weapons Center
Code 3858
China Lake, CA 93555 | 1 | Dr. G. Bosmajian
Applied Chemistry Division
Naval Ship Research & Deve | | | Mr. R. McCarten
Naval Weapons Center | 1 | Center
Annapolis, MD 21401 | | | Code 3272
China Lake, CA 93555 | | Dr. H. Shuey
Rohm and Haas Company
Huntsville, AL 35801 | 1 | | | No. Copies | No. Copies | |--|------------|---| | Mr. R. Brown
Naval Air Systems Command
Code 330
Washington, D.C. 20361 | 1 . | Dr. J. Schnur 1
Naval Research Lab.
Code 6510
Washington, D.C. 20375 | | Dr. H. Rosenwasser
Naval Air Systems Command
AIR-310C
Washington, D.C. 20360 | ī | Mr. R. Beauregard 1
Naval Sea Systems Command
SEA 64E
Washington, D.C. 20362 | | Mr. B. Sobers
Naval Air Systems Command
Code 03P25
Washington, D.C. 20360 | | Mr. G. Edwards l
Naval Sea Systems Command
Code 62R3
Washington, D.C. 20362 | | Dr. L.R. Rothstein Assistant Director Naval Explosives Dev. Engineering Dept. Naval Weapons Station Yorktown, VA 23691 | 1 | Mr. John Boyle 1 Materials Branch Naval Ship Engineering Center Philadelphia, PA 19112 Dr. H.G. Adolph | | Dr. Lionel Dickinson
Naval Explosive Ordnance
Disposal Tech. Center
Code D | 1 | Naval Surface Weapons Center
Code R11
White Oak
Silver Spring, MD 20910 | | Indian Head, MD 20640 Mr. C.L. Adams Naval Ordnance Station Code PM4 | 1 | Dr. T.D. Austin
Naval Surface Weapons Center
Code R16
Indian Head, MD 20640 | | Indian Head, MD 20640 Mr. S. Mitchell Naval Ordnance Station Code 5253 Indian Head, MD 20640 | 1 | Dr. T. Hall 1
Code R-11
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, MD 20910 | | Dr. William Tolles
Dean of Research
Naval Postgraduate School
Monterey, CA 93940 | 1 | Mr. G.L. Mackenzie 1
Naval Surface Weapons Center
Code R101
Indian Head, MD 20640 | | Naval Research Lab.
Code 6100
Washington, D.C. 20375 | 1 | Dr. K.F. Mueller 1
Naval Surface Weapons Center
Code RII
White Oak
Silver Spring, MD 20910 | : | No. | Copies | No. | Copies | |--|--------|---|--------| | Dr. R.G. Rhoades
Commander
Army Missile Command
DRSMI-R
Redstone Arsenal, AL 35898 | 1 | Dr. E.H. Debutts
Hercules Inc.
Baccus Works
P.O. Box 98
Magna, UT 84044 | ī | | Dr. W.D. Stephens
Atlantic Research Corp.
Pine Ridge Plant
7511 Wellington Rd.
Gainesville, VA 22065 | 1 | Dr. James H. Thacher
Hercules Inc. Magna
Baccus Works
P.O. Box 98
Magna, UT 84044 | 1 | | Dr. A.W. Barrows
Ballistic Research Laboratory
USA ARRADCOM
DRDAR-BLP
Aberdeen Proving Ground, MD 21005 | 1 | Mr. Theodore M. Gilliland
Johns Hopkins University APL
Chemical Propulsion Info. Ag
Johns Hopkins Road
Laurel, MD 20810 | | | Dr. C.M. Frey
Chemical Systems Division
P.O. Box 358
Sunnyvale, CA 94086 | 1 | Dr. R. McGuire
Lawrence Livermore Laborator
University of California
Code L-324
Livermore, CA 94550 | l
y | | Professor F. Rodriguez
Cornell University
School of Chemical Engineering
Olin Hall
Ithaca, NY 14853 | 1 | Dr. Jack Linsk
Lockheed Missiles & Space Co
P.O. Box 504
Code Org. 83-10, Bldg. 154
Sunnyvale, CA 94088 | . 1 | | Defense Technical Information
Center
DTIC-DDA-2
Cameron Station
Alexandria, VA 22314 | 12 | Dr. B.G. Craig
Los Alamos National Lab
P.O. Box 1663
NSP/DOD, MS-245
Los Alamos, NM 87545 | 1 | | Dr. Rocco C. Musso Hercules Aerospace Division Hercules Incorporated Alleghany Ballistic Lab P.O. Box 210 Washington, DC 21502 | 1 | Dr. R.L. Rabie
WX-2, MS-952
Los Alamos National Lab.
P.O. Box 1663
Los Alamos, NM 87545 | 1 | | Dr. Ronald L. Simmons
Hercules Inc. Eglin
AFATL/DLDL
Eglin AFB, FL 32542 | 1 | Dr. R. Rogers
Los Alamos Scientific Lab.
WX-2
P.O. Box 1663
Los Alamos, NM 87545 | 1 | | No. | Copies | No. 1 | Copies | |---|--------|--|------------| | Dr. J.F. Kincaid
Strategic Systems Project
Office
Department of the Navy | 1 | Dr. C.W. Vriesen Thiokol Elkton Division P.O. Box 241 Elkton, MD 21921 | 1 | | being egit by the ment of | 1 | Dr. J.C. Hinshaw
Thiokol Wasatch Division
P.O. Box 524
Brigham City, UT 83402 | 1 | | Propulsion Unit
Code SP2731
Department of the Navy
Washington, D.C. 20376 | | U.S. Army Research Office
Chemical & Biological Sciences
Division | 1 | | Mr. E.L. Throckmorton
Strategic Systems Project Office | 1 . | P.O. Box 12211
Research Triangle Park, NC 277 | 09 | | Department of the Navy
Room 1048
Washington, D.C. 20376 | | Dr. R.F. Walker
USA ARRADCOM
DRDAR-LCE | 1 | | Dr. D.A. Flanigan Thiokol Huntsville Division | 1 | Dover, NJ 07801 | | | Huntsville, AL 35807 Mr. G.F. Mangum Thiokol Corporation Huntsville Division Huntsville, AL 35807 | 1 | Dr. T. Sinden Munitions Directorate Propellants and Explosives Defense Equipment Staff British Embassy 3100 Massachusetts Ave. | 1 | | Mr. E.S. Sutton Thiokol Corporation Elkton Division P.O. Box 241 Elkton, MD 21921 | 1 | Washington, D.C. 20008 | · | | Dr. G. Thompson
Thiokol
Wasatch Division
MS 240 P.O. Box 524
Brigham City, UT 84302 | 1 | Mr. J.M. Frankle
Army Ballistic Research Labs
ARRADCOM
Code DRDAR-BLI
Aberdeen Proving Ground, MD | 1
21005 | | Dr. T.F. Davidson Technical Director Thiokol Corporation Government Systems Group P.O. Box 9258 Ogden, UT 84409 | 1 | Dr. Ingo W. May
Army Ballistic Research Lab
ARRADCOM
Code DRDAR-BLI
Aberdeen Proving Ground, MD | 1
21005 | ## No. Copies | E. J. Palm
Commander
Army Missile Command
DRSMI-RK
Redstone Arsenal, AL 35898 | 1 | Dr. Kenneth O. Hartman Hercules Aerospace Division Hercules Incorporated Allegany Ballistics Lab P.O. Box 210 Cumberland, MD 21502 | 1 | |---|---|--|---| | Dr. Merrill K. King
Atlantic Research Corp.
5390 Cherokee Avenue
Alexandria, VA 22314 | 1 | | 1 | | Dr. R.J. Bartlett
Batelle Columbus Laboratories
505 King Avenue
Columbus, OH 43201 | 1 | | 1 | | Or. P. Rentzepis
Bell Laboratories
Murray Hill, NJ 07971 | 1 | Los Alamos, NM 87544 Dr. H.P. Marshall | 1 | | Professor Y.T. Lee
Department of Chemistry
University of California
Berkeley, CA 94720 | 1 | Dept. 52-35, Bldg. 204.2
Lockheed Missile & Space Co.
3251 Hanover Street
Palo Alto, CA 94304 | | | Professor M. Nicol
Department of Chemistry
405 Hilgard Avenue
University of California | 1 | Professor John Deutsch
MIT
Department of Chemistry
Cambridge, MA 02139 | 1 | | Professor S.S. Penner University of California Energy Center | 1 | Professor Barry Kunz
College of Sciences & Arts
Department of PHysics
Michigan Technological Univ.
Houghton, MI 49931 | 1 | | Mail Code B-010
La Jolla, CA 92093 | | Dr. R. Bernecker
Code R13 | 1 | | Professor Curt Wittig University of Southern CA Dept. of Electrical Engineering | 1 | Naval Surface Weapons Center
White Oak
Silver Spring, MD 20910 | | | University Park
Los Angeles, CA 90007 | | Dr. C.S. Coffey
Naval Surface Weapons Center
Code R13
White Oak
Silver Spring, MD 20910 | 1 | 1 | | No. Copies | |--|------------| | Dr. W. L. Elban | 1 | | Code R13 Naval Surface Weapons Cente | r | | White Oak
Silver Spring, MD 20910 | | | Mr. K.J. Graham
Naval Weapons Center
Code 3835 | ī | | China Lake, CA 93555 | | | Dr. B. Junker Office of Naval Research Code 421 Arlington, VA 22217 | 1 | | Prof. H.A. Rabitz | 1 | | Department of Chemistry
Princeton University
Princeton, NH 08540 | • | | Or. M. Farber | 1 | | Space Sciences, Inc.
135 West Maple Avenue
Monrovia, CA 91016 | | | Mr. M. Hill
SRI International | 1 | | 333 Ravenswood Avenue
Menlo Park, CA 94025 | | | U.S. Army Research Office
Engineering Division
Box 12211 | ١ | | Research Triangle Park, NC | 27709 | | U.S. Army Research Office
Metallurgy & Materials Sci.
Box 12211 | Div. | | Research Triangle Park, NC | 27709 | | Professor G.D. Duvall
Washington State University
Department of Physics
Pullman, WA 99163 | 1 |